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Abstract

We present a new limiter for the PPM method of Colella and Woodward [4] that
preserves accuracy at smooth extrema. It is based on constraining the interpolated
values at extrema (and only at extrema) using nonlinear combinations of various
difference approximations of the second derivatives. Otherwise, we use a standard
geometric limiter to preserve monotonicity away from extrema. This leads to a
method that has the same accuracy for smooth initial data as the underlying PPM
method without limiting, while providing sharp, non-oscillatory representations of
discontinuities.
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1 Introduction

One of the great successes in numerical methods for hyperbolic conservation
laws has been the use of nonlinear hybridization techniques, known as limiters,
to maintain positivity and monotonicity in the presence of discontinuities and
underresolved gradients. As originally formulated [3,14,5], these methods have
the property that the truncation error is first-order accurate at all extrema,
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regardless of the accuracy of the underlying high-order method. This problem
has been known since these methods were first introduced, and there have been
a variety of methods proposed to deal with it. Typically, these have been based
on the idea allowing the representation of solution values outside the range
defined by the cell averages [16], while still suppressing oscillations at discon-
tinuities and underresolved gradients. In particular, the methods proposed to
solve the problem to obtain uniform high-order accuracy for smooth solutions
[6,8,7,13,2,10] typically have used quite elaborate analytic and / or geomet-
ric constructions. In this note, we propose a particularly simple approach to
solving this problem for the PPM method [4]. It is based on changing the
PPM limiter at extrema (and only at extrema) using nonlinear combinations
of various difference approximations of the second derivatives. This leads to
a method that has the same accuracy for smooth initial data as the under-
lying PPM method without limiting, while providing sharp, non-oscillatory
representations of discontinuities.

2 Scalar Advection

We will consider the linear advection equation in one space dimension.

∂a

∂t
+ u

∂a

∂x
= 0 (1)

We assume that we know at time step n the averages of a over finite volume
cells of length h.

〈a〉nj ≈
1

h

(j+1/2)h∫

(j−1/2)h

a(x, n∆t)dx (2)

The PPM method in [4] for computing 〈a〉n+1
j is a conservative finite difference

method

〈a〉n+1
j = 〈a〉nj +

u∆t

h
(a

n+ 1

2

j− 1

2

− a
n+ 1

2

j+ 1

2

) (3)

where a
n+ 1

2

j+ 1

2

is the average of a parabolic interpolant over the interval swept

out by the characteristics crossing the cell face at (j + 1
2
)h).

a
n+ 1

2

j+ 1

2

= Ij,+(σ) if u > 0 (4)

= Ij+1,−(σ) otherwise
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where σ = |u|∆t/h, and

Ij,+(σ) ≡
1

σh

∫ (j+ 1

2
)h

(j+ 1

2
)h−σh

aI
j (x)dx (5)

Ij,−(σ) ≡
1

σh

∫ (j− 1

2
)h+σh

(j− 1

2
)h

aI
j (x)dx (6)

The parabolic interpolant aI
j (x), x ∈ [(j−1/2)h, (j +1/2)h] is uniquely deter-

mined by the cell average 〈a〉nj and the left and right extrapolated edge values
aj,± = aI

j (j ± 1/2)h).

aI
j (x) = aj,− + ξ(aj,+ − aj,− + a6,j(1 − ξ)) , a6,j = 6〈a〉nj − 3(aj,− + aj,+) (7)

ξ =
x − jh

h
, 0 ≤ ξ ≤ 1 (8)

For this choice of interpolant, the averages (5), (6) are given by the following
formulas

Ij,+(σ) = aj,+ −
σ

2
(aj,+ − aj,− − (1 −

2

3
σ)a6,j) (9)

Ij,−(σ) = aj,− +
σ

2
(aj,+ − aj,− + (1 −

2

3
σ)a6,j). (10)

It is easy to check that

σIj,+(σ) + (1 − σ)Ij,−(1 − σ) = 〈a〉nj , 0 ≤ σ ≤ 1. (11)

To complete the description of the algorithm, we must specify how the parabolic
interpolant is computed, or, equivalently, how the aj,± are computed. In [4],
this was done in two steps.

Interpolating face values. We compute high-order accurate approximations to
a at cell edges

an
j+ 1

2

= a((j +
1

2
)∆x, n∆t) + O(hp) , p ≥ 3 (12)

and impose the constraint that an
j+ 1

2

must lie between the adjacent cell aver-
ages.

min(〈a〉nj , 〈a〉nj+1) ≤ an
j+ 1

2

≤ max(〈a〉nj , 〈a〉
n
j+1) (13)

Constructing the parabolic interpolant. We initialize the left and right extrap-
olated edge values of the parabolic profile to be aj,± = an

j± 1

2

, and constrain

the left and right edge values so that the interpolated parabolic profile is
monotone.
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(1) If (aj,+ − 〈a〉nj )(aj,− − 〈a〉nj ) > 0, then we set

aj,+ = aj,− = 〈a〉nj (14)

(2) Otherwise, if one of |aj,± − 〈a〉nj | ≥ 2|aj,∓ − 〈a〉nj | then for that choice of
± = +,− we set

aj,± := 〈a〉nj − 2(aj,∓ − 〈a〉nj ). (15)

In [4], (12) is computed by taking averages of a piecewise-linear interpolant to
which van Leer limiting was applied. In smooth regions away from extrema,
this leads to the formula

an
j+ 1

2

=
7

12
(〈a〉nj + 〈a〉nj+1) −

1

12
(〈a〉nj−1 + 〈a〉nj+2) (16)

which is fourth-order accurate. In addition, the use of van Leer limiters auto-
matically enforces the constraint (13).

For smooth solutions away from from extrema, PPM is third-order accurate
for linear advection, and fourth-order accurate in the limit of vanishing CFL
number. However, the monotonicity constraints (13), (14), at extrema reduce
the truncation error at such locations to O(h). This reduces the overall ac-
curacy of the method, as well as introducing a non-smooth component to
the error. To eliminate this problem, we construct a new limiting scheme at
extrema to replace (13), (14). It follows the same outline as that given above.

Interpolating face values. We use a linear scheme to compute high-order accu-
rate approximations to a at cell edges, such as the fourth-order discretization
(16). To obtain the results presented here, we used the following sixth-order
approximation, which provides slightly better accuracy for smooth solutions
at low CFL number, at a modest additional cost.

an
j+ 1

2

=
37

60
(〈a〉nj + 〈a〉nj+1) −

2

15
(〈a〉nj−1 + 〈a〉nj+2) +

1

60
(〈a〉nj−2 + 〈a〉nj+3) (17)

We limit this value by using a nonlinear combination of approximations to the
second derivative. If an

j+ 1

2

does not satisfy (13), then we impose the following

constraint.

(D2a)j+ 1

2

=
3

h2
(〈a〉nj − 2an

j+ 1

2

+ 〈a〉nj+1)

(D2a)j+ 1

2
,L =

1

h2
(〈a〉nj−1 − 2〈a〉nj + 〈a〉nj+1)

(D2a)j+ 1

2
,R =

1

h2
(〈a〉nj − 2〈a〉nj+1 + 〈a〉nj+2)

If the signs of (D2a)j+ 1

2

, (D2a)j+ 1

2
,{L,R} are all the same, we define

(D2a)j+ 1

2
,lim = s min(C|(D2a)j+ 1

2
,L|, C|(D2a)j+ 1

2
,R|, |(D

2a)j+ 1

2

|) (18)
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s = sign((D2a)j+ 1

2

)

Otherwise, (D2a)j+ 1

2
,lim = 0. Then

an
j+ 1

2

:=
1

2
(〈a〉nj + 〈a〉nj+1) −

h2

3
(D2a)j+ 1

2
,lim (19)

Here C > 1 is a constant independent of the mesh spacing h. If a is smooth and
∂2

xa 6= 0 in the neighborhood of the extremum, then (D2a)j+ 1

2

, (D2a)j+ 1

2
,L and

(D2a)j+ 1

2
,R are all consistent approximations to ∂2

xa and differ by no more than

O(h) from one another. Thus for h sufficiently small, (D2a)j+ 1

2
,lim = (D2a)j+ 1

2

and an
j+ 1

2

will remain unchanged by the limiting process, thus preserving the

accuracy of the interpolated value. We also observe that, at degenerate ex-
trema ((∂xa)(x, t) = (∂2

xa)(x, t) = 0), all three estimates of ∂2
xa are themselves

no greater than O(h2), and the resulting value for an
j+ 1

2

is fourth-order accu-

rate. On the other hand, if the violation of the monotonicity constraint (13)
is at a face adjacent to a discontinuity, we expect that one of (D2a)j+ 1

2
,L,

(D2a)j+ 1

2
,R will be much smaller in magnitude than (D2a)j+ 1

2

, or have a dif-
ferent sign. In either case, the limiting process will reduce the amplitude of
the oscillation, bring the edge value closer to the average of the two adjacent
cell averages. This is a simple algebraic form of the mechanism used in [16] by
which smooth extrema are left unchanged, while still limiting the interpolated
profile at discontinuities.

Constructing the parabolic interpolant. We initialize the left and right extrap-
olated values aj,± = an

j±1/2, which are then modified to constrain the parabolic
profile in each cell. Then the two steps described above for the PPM algorithm
are replaced by the following.

(1) If

(aj,+ − 〈a〉nj )(〈a〉nj − aj,−) ≤ 0

or (20)

(〈a〉nj−1 − 〈a〉nj )(〈a〉nj − 〈a〉nj+1) ≤ 0

then we are at a local extremum, and we use an approach similar to
that used above above to constrain an

j± 1

2

without losing accuracy if the

solution is smooth.

(D2a)j = −
2a6,j

h2

(D2a)j,C =
1

h2
(〈a〉nj−1 − 2〈a〉nj + 〈a〉nj+1)

(D2a)j,L =
1

h2
(〈a〉nj−2 − 2〈a〉nj−1 + 〈a〉nj )
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(D2a)j,R =
1

h2
(〈a〉nj − 2〈a〉nj+1 + 〈a〉nj+2) (21)

Again, if (D2a)j ,(D
2a)j,{L,C,R} all have the same sign, then

(D2a)j,lim = s min(C|(D2a)j,L|, C|(D2a)j,R|, C|(D2a)j,C|, |D
2aj |) (22)

s = sign((D2a)j)

for some constant C > 1, chosen independently from h. Otherwise,
(D2a)j,lim = 0. Then

aj,± := 〈a〉nj + (aj,± − 〈a〉nj )
(D2a)j,lim

(D2a)j

(23)

If the denominator in the last expression vanishes, we set the ratio of the
two estimates of ∂2

xa to be zero.
The purpose of this limiter is to reduce a6,j so that (D2a)j = (D2a)j,lim.

Note that if (D2a)j,lim = 0, then the edge values are the same as in (14).
As before, at smooth extrema with ∂2

xa 6= 0, this limiting process leaves
the extrapolated edge values unchanged if h is sufficiently small, and
introduces an error no greater than O(h4) at degenerate extrema. Near
discontinuities and other underresolved gradients, the same mechanisms
for suppressing oscillations as those described for (18), (19) are in effect.

(2) If (20) does not hold, we could proceed as in the original PPM method to
impose the constraint (15) to obtain a monotonic parabolic profile in the
cell. However, it was pointed out in [15] that the requirement that the
parabolic profile be monotone in a cell is more restrictive than is required
for the method to be monotonicity-preserving. In the results presented
here, we impose a less-restrictive, but sufficient condition analogous to
that satisfied by van Leer limiting in [14].

s 〈a〉nj−1 ≤ s Ij,−(σ) ≤ s 〈a〉nj ≤ s Ij,+(σ) ≤ s 〈a〉nj+1 (24)

s = sign(〈a〉nj+1 − 〈a〉nj−1)

We define αj,± = aj,±−〈a〉nj . If one of |αj,±| ≥ 2|αj,∓| holds, then for that
choice of ± = +,− we compute

δIext =
−α2

j,±

4(αj,+ + αj,−)
, δa = 〈a〉nj±1 − 〈a〉nj (25)

If s δIext ≥ s δa, then we set

aj,± := 〈a〉nj − (2 δa + 2 s ((δa)2 − δa αj,∓)
1

2 ) (26)

which causes the parabolic interpolant to satisfy (24). It follows easily
from (24) and (11) that

min(〈a〉nj , 〈a〉
n
j−s′) ≤ 〈a〉n+1

j ≤ max(〈a〉nj , 〈a〉
n
j−s′) , s′ = sign(u)
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which implies that the scheme is monotonicity-preserving away from ex-
trema.

To summarize, we modify the original PPM algorithm in the following fash-
ion. We use (17) to construct an

j+ 1

2

, constraining the values by (18), (19) at

locations where (13) is not satisfied. In constructing the parabolic profile, we
use (22), (23) to compute the parabolic profile at local extrema where (20)
holds. Otherwise, we use a standard monotonicity-preserving limiter such as
(15) or (26). In the results presented in the next section, we have used (26).

3 Results

We present results for advection in one dimension that demonstrate the im-
provement of the accuracy of the method using this limiter. We use the fol-
lowing standard 1D test problems [17].

• Gaussian : a(x, 0) = e256(x− 1

2
)2 .

• Semi-circle: a(x, 0) = (max( 1
16

− (x − 1
2
)2), 0))

1

2

• Square wave: a(x, 0) = 1 if |x − 1
2
| ≤ 1

4
, otherwise a(x, 0) = 0.

All calculations are performed on the unit interval with periodic boundary
conditions, advection velocity u = 1, and CFL number σ = .2. For the new
extremum-preserving limiter, we set the coefficient C appearing in (18), (22) to
be C = 1.25. We have not found any straightforward geometric interpretation
of the new limiter to guide our choice of the coefficient C, other than it must
be greater than 1, independent of h. For the test cases presented here, the
results appear to be insensitive to the exact value of C over the range 1.25
- 5. In order to obtain third-order accurate results for smooth problems, we
initialize the averages of a to be fourth-order accurate at all cells where the
solution is smooth.

〈a〉0j = a(jh, 0) +
1

24
(a((j − 1)h, 0) − 2a(jh, 0) + a((j + 1)h, 0)) (27)

Tables 1 and 2 show errors and rates of convergence for these three test prob-
lems using, respectively, the original PPM limiter and the new limiter de-
scribed here. The use of the extremum-preserving limiter leads to significant
improvement in the error in the Gaussian test problem, small improvement in
the semi-circle problem, and no significant change in the error for the square-
wave problem. The improved accuracy is entirely due to the use of the new
limiters that are applied at extrema, and only makes a difference for cases
where the error in the old approach is dominated by that at smooth extrema.
For problems for which the main error is due to the the presence of disconti-
nuities or other singularities, we expect that the methods should produce very
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similar results. This conclusion is supported by the comparisons in Figures 1
and 2.

Ncell G L1 Rate G L∞ Rate SC L1 Rate S L1 Rate

32 7.6E-2 - 4.8E-1 - 7.8E-3 - 8.4E-2 -

64 2.7E-2 1.5 2.7E-1 0.8 4.3E-3 0.9 4.8E-2 0.8

128 7.7E-3 1.8 1.0E-1 1.4 1.9E-3 1.2 2.8E-2 0.8

256 1.3E-3 2.6 3.1E-2 1.7 8.3E-4 1.2 1.6E-2 0.8

Table 1: Errors and convergence rates for 1D advection tests for the original
PPM Limiter. G=Gaussian, SC = semi-circle, S = square wave. Time

t = 10, σ = 0.2.

Ncell G L1 Rate G L∞ Rate SC L1 Rate S L1 Rate

32 4.1E-2 - 2.9E-1 - 7.3E-3 - 7.7E-2 -

64 1.1E-2 1.9 9.7E-2 1.6 3.2E-3 1.2 4.4E-2 0.8

128 2.0E-3 2.5 1.8E-2 2.4 1.4E-3 1.2 2.6E-2 0.8

256 2.6E-4 2.9 2.5E-3 2.8 6.1E-4 1.2 1.5E-2 0.8

Table 2: Errors and convergence rates for 1D advection tests using
extremum-preserving limiter. Notation the same as in Table 1.

0.3 0.4 0.5 0.6 0.7

0

0.2

0.4

0.6

0.8

1

x

a

Analytic
Ext−Pres
Conven

Fig. 1. The extremum-preserving
limiter (blue) vs. the original PPM
limiter (red) vs. the exact solution
(black). Gaussian test, Ncell = 128,
t = 10, σ = 0.2.
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Fig. 2. The extremum-preserving
Limiter (blue) vs. the original PPM
limiter (red) vs. the exact so-
lution (black). Square-wave test,
Ncell = 128, t = 10, σ = 0.2.
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4 Conclusions and Future Work

We presented here a simple method that generalizes the limiter in [4] to pre-
serve the high-order accuracy of the method at smooth extrema. This is done
by replacing the constraints (13), (14) at extrema with (19), (23). The impact
of the application of this method on the computational cost is negligible, both
because of its simplicity, and since it is only applied at extrema. The method
described here is only one of a number of design variations using these ideas,
some of which are described in [11]. In particular, we can use this approach to
obtain a method for computing MUSCL slopes that preserves smooth extrema
that is closely related to the approach described in [16]. One can then use this
MUSCL calculation as the starting point for computing fourth- or sixth-order
edge values, along the lines of the original PPM algorithm.

The extension of PPM to nonlinear systems of hyperbolic conservation laws
as described in [4,9] is based the use of an appropriate upstream-centered
predictor step that computes (4) for each family of characteristic variables to
obtain the left and right states for a Riemann problem, the solution to which
is then used to compute the fluxes. The limiter is either applied component-
wise to the primitive variables, or applied to the characteristic variables. The
method described here can be trivially used for the primitive variable inter-
polation case, and the construction in [9] can be easily extended to apply it
to the characteristic variables; for details, see [11]. Such a method has been
implemented in [12] for gas dynamics, and it is observed there that the results
obtained using that method eliminate the clipping of smooth extrema, with-
out any loss in robustness of the treatment of strongly nonlinear shocks by
the overall method.

This work also provides a starting point for constructing uniformly high-order
finite-volume methods for multidimensional hyperbolic PDE, based on high-
order quadratures that correctly distinguish between cell averages, face av-
erages, and point values [1], and the method of lines for time discretization.
For such an algorithm, we would use the limiter described above to compute
(possibly discontinuous) extrapolated edge values, in much the same fashion
that the MUSCL limiter is used in method-of-lines calculations.

Finally, there is no guarantee that the method described here preserves global
bounds such as positivity. This is an important property for some physical
applications such as kinetic systems, where an advected quantity represents
a number density or probability density in phase space. To deal with this
problem, one can combine the present method with the FCT method in [16],
with the latter used only to enforce the global bounds.

Acknowledgements. Work at LBNL was by supported by the U.S. Depart-

9



ment of Energy Office of Advanced Scientific Computing Research under con-
tract number DE-AC02-05CH11231. MDS was supported by the U.S. Depart-
ment of Energy Computational Sciences Graduate Fellowship Program under
grant number DE-FG02-97ER25308.

References

[1] M. Barad and P. Colella. A fourth-order accurate local refinement method for
Poisson’s equation. Journal of Computational Physics, 209:1-18, 2005.

[2] R. Biswas, K. D. Devine, and J. E. Flaherty. Parallel adaptive finite element
methods for conservation laws. Applied Numerical Mathematics, 14:255-284,
1994.

[3] J. P. Boris and D. L. Book. Flux-corrected transport. III. Minimal-error FCT
algorithms. Journal of Computational Physics, 20:397-431, 1976.

[4] P. Colella and P. R. Woodward. The Piecewise Parabolic Method (PPM) for
gas-dynamical simulations. Journal of Computational Physics, 54:174-201, 1984.

[5] A. Harten. High resolution schemes for hyperbolic conservation laws. Journal of

Computational Physics, 49:357-393, 1983.

[6] A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy. Uniformly high
order accurate essentially non-oscillatory schemes, III. Journal of Computational

Physics, 77:231-303, 1987.

[7] H. T. Huynh. Accurate upwind methods for the Euler equations. SIAM Journal

on Numerical Analysis, 32:1565-1619, 1995.

[8] X. D. Liu, S. Osher, and T. Chan. Weighted essentially non-oscillatory schemes.
Journal of Computational Physics, 115:200-212, 1994.

[9] G. H. Miller and P. Colella. A conservative three-dimensional Eulerian method
for coupled solid-fluid shock capturing. Journal of Computational Physics,
183:26-82, 2002.

[10] W. J. Rider, J. A. Greenough, and J. R. Kamm. Accurate monotonicity- and
extrema-preserving methods through adaptive nonlinear hybridizations. Journal

of Computational Physics, 225:1827-1848, 2007.

[11] M. D. Sekora and P. Colella. Extremum-Preserving Limiters for MUSCL and
PPM methods. Submitted to arXiv.org, 2008.

[12] J. M. Stone, T. A. Gardiner, P. Teuben, J. F. Hawley, and J. B. Simon. Athena:
a new code for astrophysical MHD. Astrophysical Journal Supplement Series,
2008, in press.

[13] A. Suresh and H. T. Huynh. Accurate monotonicity-preserving schemes with
Runge-Kutta time stepping. Journal of Computational Physics 136(1):83-99,
1997.

10



[14] B. van Leer. Towards the ultimate conservative difference scheme. IV. A new
approach to numerical convection. Journal of Computational Physics, 23:276-
299, 1977.

[15] P. R. Woodward. Piecewise-parabolic methods for astrophysical fluid dynamics.
K. H. A. Winkler and M. L. Norman, editors. Astrophysical Radiation

Hydrodynamics, pg 245-326, 1986.

[16] S. T. Zalesak. Fully multidimensional flux-corrected transport algorithms for
fluids. Journal of Computational Physics, 31:335-362, 1979.

[17] S. T. Zalesak. Apreliminary comparison of modern shock-capturing schemes:
linear advection. In R. Vichnevetsky and R. Stepleman, editors. Advances in

Computer Methods for Partial Differential Equations VI p. 15–22 , 1987.

11


